Polarization Jet: characteristics and a model
نویسنده
چکیده
Recent analysis of the ground-based observations of the Polarization Jet (PJ) effects in the subauroral ionosphere has shown that PJ can rapidly develop in the nearmidnight sector near the Harang Discontinuity (HD). Based on these observations, a simple, semi-quantitative theory of the PJ formation and its main characteristics is constructed. According to the model, PJ starts to develop, as proposed by Southwood and Wolf, 1978, due to the penetration of the injected energetic ions to the deeper L-shells in the presence of the westward component of the electric field. The injection near the tip of the HD is assumed here. The initial development stage of the PJ band, considered only qualitatively, is supposed to lead to its inclination inward toward evening with respect to the lines B = const. Within the model proposed, the PJ band, once formed, will be sustained by the continuous charging at its equatorial side, at first, mainly by the newly injected ring current ions, and later by the plasma sheet ions convected inward through the HD. In addition, an important charging of the PJ band occurs at its polar side by energetic electrons drifting eastward. These electrons were either previously on the trapped orbits or convected inward from the plasma sheet, and encounter the PJ polar border. The model semi-quantitatively describes the main features of the PJ events: the typical cross-PJ voltage drop (∼ 10 kV), the resulting double-sheet current loop feeding the PJ, the recently observed short PJ formation time near midnight (∼ 10 min or less) accompanied by a fast westward HD displacement, the nearly steady-state PJ location in the evening to midnight MLT sector and width in the ionospheric frame, the bell-shape of the electric field latitude profile, and the long PJ lifetime (up to several hours) all are in rough accord with observations. Further developments of the model now in progress are briefly described.
منابع مشابه
Unsteady Numerical Investigations of Flow and Heat Transfer Characteristics of Nanofluids in a Confined Jet Using Two-Phase Mixture Model
The development of high-performance thermal systems has increased interest in heat transfer enhancement techniques. The application of additives to heat transfer liquids is one of the noticeable effort to enhance heat transfer. In this paper two-dimensional unsteady incompressible nanofluid flow in a confined jet at the laminar flow regime is numerically investigated. The Mixture model is consi...
متن کاملComparison of different turbulence models in a high pressure fuel jet
In this study, modeling of a fuel jet which has been injected by high pressure into a low-pressure tank are investigated. Due to the initial conditions and the geometry of this case and similar cases (like CNG injectors in internal combustion engines (ICE)), the barrel shocks and Mach disk are observed. Hence a turbulence and transient flow will be expected with lots of shocks and waves. Accord...
متن کاملOblique Shocks as the Origin of Radio to Gamma-ray Variability in Agn
The ‘shock in jet’ model for cm-waveband blazar variability is revisited, allowing for arbitrary shock orientation with respect to the jet flow direction, and both random and ordered magnetic field. It is shown that oblique shocks can explain events with swings in polarization position angle much less than the 90 associated with transverse structures, while retaining the general characteristics...
متن کاملHigh-Energy Polarization: Scientific Potential and Model Predictions
Understanding magnetic field strength and morphology is very important for studying astrophysical jets. Polarization signatures have been a standard way to probe the jet magnetic field. Radio and optical polarization monitoring programs have been very successful in studying the spaceand time-dependent jet polarization behaviors. A new era is now arriving with high-energy polarimetry. X-ray and ...
متن کاملTurbulent characteristics in flow subjected to bed suction and jet injection as a pier-scour countermeasure
The effect of a combined system of the bed suction and jet injection as a pier-scour countermeasure on the turbulent flow field is studied in a laboratory flume using an Acoustic Doppler Velocimeter (ADV). The three components of the velocities in the vertical symmetry plane in the equilibrium scour hole in front and rear of the pier under 3-jet injections and bed suction rate Qs/Q0 = 2%located...
متن کاملUsing a combination of genetic algorithm and particle swarm optimization algorithm for GEMTIP modeling of spectral-induced polarization data
The generalized effective-medium theory of induced polarization (GEMTIP) is a newly developed relaxation model that incorporates the petro-physical and structural characteristics of polarizable rocks in the grain/porous scale to model their complex resistivity/conductivity spectra. The inversion of the GEMTIP relaxation model parameter from spectral-induced polarization data is a challenging is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001